深基坑混凝土支撑体系切割拆除技术优化与应用

作者:谢向阳 邢益江 谭海涛 吴土日
单位:中国建筑工程(澳门)有限公司
摘要:以珠海信德横琴A03项目深基坑混凝土支撑拆除为基础, 研究归纳了深基坑混凝土支撑体系拆除的优化施工工艺和配套技术, 包括采用跳仓法代替伸缩后浇带、多层楼面协同支承中型叉车场内运输、实行两阶段卸荷切割等施工工艺等, 制定严格科学的拆撑管理制度和实时监测制度。工程实践表明, 优化后的施工工艺确保了深基坑支撑梁拆除时支护体系的安全, 节约了工期和成本。
关键词:基坑 支护 拆除 绳锯切割 跳仓法 监测 施工技术
作者简介:谢向阳, 高级工程师, E-mail:178564280@qq.com;

 

1 工程概况

珠海信德横琴A03项目位于珠海横琴新口岸广场北侧, 是集商业、办公、酒店、商务公寓于一体的超高层城市综合体, 总建筑面积22.3万m2, 占地面积2.2万m2。该综合体地下4层, 基坑深17.8m、长168m、宽128m, 面积2.1万m2, 基坑采用钢筋混凝土连续墙+内支撑的形式支护, 支撑由混凝土对撑桁架和角桁架组成。

支撑梁最大截面尺寸为1 000mm×1 000mm, 总长度约18.7km, 混凝土浇筑总量约1.7万m3, 支撑拆除工作量大。珠海作为国家级旅游城市, 大力提倡绿色施工, 综合考虑后项目采用绳锯切割法拆除支撑。

2 绳锯切割法

绳锯切割法是采用绳锯固定于支撑梁分段位置, 利用电动机带动绳锯对支撑梁进行研磨切割, 直至切断。

采取合理措施保证支撑梁安全高效切割和切割块的运输是该工艺的难点。本工程结合项目实际, 对施工工艺和技术措施进行优化, 以期保证深基坑混凝土支撑体系拆除安全高效。

3 切割块运输

3.1 运输工具

支撑梁切割后, 采用汽车式起重机将切割块吊运出场地。本工程周边缺少施工场地, 同时考虑支撑梁承载力, 100t汽车式起重机只能在如图1所示的斜线区域内行走, 吊运范围为阴影区域, 不能完全覆盖整个支撑梁体系, 必须利用运输工具将切割块运到起吊区域;除最顶部支撑外, 其他支撑切割块均需水平移出上部支撑投影范围后起吊。因此, 水平运输工效对支撑拆除起决定作用。

图1 汽车式起重机行走区域

图1 汽车式起重机行走区域

Fig.1 Traveling area of truck crane

切割块的水平运输采用叉车或自制手拉车 (见图2) 且优先使用叉车。作业楼层的承载力及设置后浇带形成的薄弱区域限制了叉车, 本工程采用协同承载和跳仓法确保叉车正常使用。

图2 切割块水平运输工具

图2 切割块水平运输工具

Fig.2 Transport tools for cutting blocks

3.2 叉车运输

国内地下室楼板楼面允许活荷载一般约为4.0kN/m2, 装修恒荷载约为1.5kN/m2。对于6m×9m柱网, 采用7t叉车 (自重9.6t、总重16.6t) 转运时结构梁通常能满足承载要求, 但结构板跨中和支座处的正负弯矩会远大于设计值。支撑拆除时, 要保留操作层下多层楼板上的支模架, 协同承担操作层的施工荷载。支模架的层数通过计算分析确定。

建立多层楼板结构及协同支撑体系的有限元模型, 按叉车运输时最不利状态布置荷载, 试算确定共同承担叉车集中荷载的楼层数, 保证结构梁和楼板内力小于设计值 (见图3) 。

建模时, 支模钢管体系简化为截面强度相等、纵横间距相同的铰接立杆, 立杆的截面尺寸根据支模钢管的稳定承载力确定;各楼板混凝土强度按实际拆撑时的强度取值;施加荷载时, 由于该分析为承载力的复核, 荷载分项系数取1.2。

3.3 跳仓法施工

图3 多层楼板协同承载模型

图3 多层楼板协同承载模型

Fig.3 Models of multiple floor slab collaboration loading

基坑支护设计时, 后浇带处传力机构往往设计不精细或保守, 难以直接用于指导施工, 若处理不当会造成楼板开裂甚至影响基坑安全, 导致后浇带成为混凝土支撑换撑体系受力薄弱环节。采用跳仓法 (见图4) 施工代替留置伸缩后浇带可有效解决上述问题。

图4 跳仓法示意

图4 跳仓法示意

Fig.4 Alternative-bay construction method

通过控制相邻两仓混凝土浇筑时间间隔 (一般为7d) 并采取合理的养护措施, 大量释放混凝土结构中前期因温度变形与干燥收缩变形引起的约束应力;通过改良混凝土抗裂性能、增加抗裂钢筋等措施, 提高混凝土抗拉强度, 避免楼面开裂。

本项目地下室施工面积约2.1万m2/层, 用跳仓分隔缝代替原设计伸缩后浇带, 仅保留塔楼沉降后浇带, 每层约取消伸缩后浇带500m, 成本节约及工期优化效果明显。

4 复杂条件下支撑梁切割吊运

4.1 密封栈桥底切割块吊运

为解决临时用地紧张问题, 在临时支撑体系上部设置栈桥板, 栈桥板的设置导致其投影区域内的支撑梁分段切割后, 无法直接使用起重机吊运。

栈桥板底支撑梁切割完成后, 运输通道存在高低跨情况时, 先采用自制运输车运输切割块, 再采用叉车将其二次转运至起吊点 (见图5) ;运输通道无高低跨则直接采用叉车将切割块运输至起吊点。

图5 栈桥底转运、吊运示意

图5 栈桥底转运、吊运示意

Fig.5 Transport at the bottom of trestle bridge

4.2 架空层高空切割块吊运

在地下室楼板高低位、空洞等位置的支撑梁离楼板的高度超过叉车工作高度, 拆除时搭设脚手架分段支承支撑梁, 电动葫芦利用钢丝绳悬挂于上层支撑梁, 固定被切割的混凝土块, 然后进行高空八字形切割, 切割后下放至叉车叉运 (见图6) 。施工阶段电动葫芦施加一定预拉力, 钢丝绳始终处于绷紧状态。

图6 架空层高空切割示意

图6 架空层高空切割示意

Fig.6 Open floor cutting at high altitude

支撑梁高位切割后, 在起吊范围内的用手拉葫芦牵引至起吊位置进行吊运, 不在吊运范围内的利用叉车转运至起吊位置。两类吊运示意如图7所示。

4.3 斜坡处切割吊运

地下室部分楼板为斜坡结构, 其上部支撑梁的拆除分为2类:吊运范围内和吊运范围外。吊运范围内的支撑梁拆除方法同架空层高空切割法;对吊运范围外的支撑梁切割块, 搭设满堂架, 上铺工字钢, 利用电动葫芦悬吊切割支撑梁, 切割块缓慢放至工字钢上, 利用叉车将其水平牵引出斜坡 (见图8) 。

5 安全施工组织设计

5.1 两阶段卸荷切割

各区段拆撑时, 由多条主梁组成的正交向对撑体系, 各根主梁同步切割卸荷;斜向角撑组成的角撑体系由外向角部分步进行切割卸荷, 如图9所示;单根支撑梁由中部向两端进行切割。

支撑梁拆除过程中, 基坑支护体系变形和应力发生变化。应力较高的主撑梁切割至一半时应停机12h, 监测复核无异常后再完全切断, 以确保基坑支护体系安全。

图7 架空层高空切割吊运示意

图7 架空层高空切割吊运示意

Fig.7 Lifting after open floor cutting at overhead

图8 斜坡处拆撑吊运示意

图8 斜坡处拆撑吊运示意

Fig.8 Transportation and lifting at ramps

图9 卸荷切割点布置示意

图9 卸荷切割点布置示意

Fig.9 Layout of unloading cut points

5.2 新浇楼板时格构柱处理

随着下层支撑体系的拆除, 格构柱的水平约束减少, 计算长度增加, 稳定性降低。部分工程实践中将格构柱与楼板浇筑在一起, 以此约束格构柱水平变形, 提高压稳性能。

利用有限元软件建模分析发现, 拆除下层支撑后, 楼板浇筑时, 当格构柱与楼板脱离, 其稳定性同样满足设计要求;当格构柱与楼板浇筑在一起, 若基坑侧壁出现一定水平位移, 尤其是靠近基坑边缘的格构柱局部将产生巨大的附加拉压应力, 压杆稳定性反而大幅降低, 同时与其相连的楼板也因局部附加拉应力导致开裂。

综上所述, 本工程地下室格构柱通过预留洞口与钢筋的方式和楼板相脱离。

5.3 基坑监测

施工时, 除正常全面监测外, 每次分区拆撑前均针对主要监测项目 (如深层水平位移、支撑轴力) 制定加密监测计划。高应力区域或深层位移异常的区域, 在卸荷切割第1阶段后进行重点加密监测。加密监测数据均迅速整理并反馈至现场, 一旦数据异常则暂停施工, 组织施工方、设计方、监测方、监理方分析原因并采取对应措施, 确定安全后恢复施工。

5.4 拆撑作业申请制度

各区段拆撑前, 编制分区拆撑方案并进行分区拆撑书面技术交底, 准备工作完成后核查检查清单执行情况, 重点包括以下内容:切割单元分段弹线验收、汽车式起重机吊装点地基复核及吊力复核、切割部位临时支撑体系是否按方案搭设、楼面叉车临时运输路线安排及楼板协同受力复核、换撑楼板试块强度报告、第三方监测单位提交基坑拆撑前监测数据及加密监测计划、旁站工作安排。各责任人确定满足要求后签字, 最终由项目总工程师批准并签署分区拆撑许可申请。

6 结语

珠海信德横琴A03项目地下室空洞、错层多, 后浇带设计过密, 部分支撑主梁轴应力过大以及深基坑局部点位位移偏大, 深基坑支撑体系情况复杂。项目采用跳仓法代替伸缩后浇带、多层楼面协同支承中型叉车场内运输、实行两阶段卸荷切割等施工工艺, 制定严格科学的拆撑管理制度和实时监测制度, 成功优化绳锯切割法拆除深基坑混凝土支撑体系施工工艺和配套技术, 确保了深基坑支撑梁拆除时支护体系的安全, 节约了工期和成本。

 

参考文献[1] 北京市建筑工程研究院有限责任公司.超长大体积混凝土结构跳仓法技术规程:DB11/T 1200—2015[S].北京:北京城建科技促进会, 2015.

[2] 北京建工集团有限责任公司.建筑拆除工程安全技术规范:JGJ 147—2016[S].北京:中国建筑工业出版社, 2016.

[3]刘向科, 许世雄, 张林.苏州某地下空间工程深基坑混凝土支撑拆除工序优化技术[J].施工技术, 2017, 46 (5) :25-28.

[4]汪少波, 王胤韬.绳锯静力切割技术在临近地铁轨道工程基坑支撑拆除中的应用[J].施工技术, 2015, 44 (22) :117-119.

[5]陈锐煌, 王盼.深基坑混凝土支撑局部拆换施工技术[J].施工技术, 2017, 46 (1) :25-27, 53.

[6]李景阳.深基坑内支撑支护结构的工程应用浅析[J].科技创新与应用, 2013 (16) :244.

[7]周予启, 任耀辉, 刘卫未.深圳平安金融中心超深基坑混凝土支撑拆除关键技术[J].施工技术, 2015, 44 (1) :32-36.

[8]刘伟, 董超, 徐岗.临地铁超深基坑复杂混凝土内支撑拆除施工技术[J].施工技术, 2017, 46 (1) :8-11.
Optimization and Application of Cutting and Removal Technology of Concrete Support System for Deep Foundation Excavation
XIE Xiangyang XING Yijiang TAN Haitao WU Turi
(China Construction Engineering ( Macao) Co., Ltd.)
Abstract: Based on the support demolition of deep foundation excavation in the A03 project of Xinde Hengqin in Zhuhai, the optimum construction technology and support technology for the demolition of deep foundation excavation concrete support system are studied and summarized, including the use of alternative-bay method instead of expansion post-pouring belt, multi-storey floor coordinated support of medium-sized forklift yard transportation, two-stage unloading and cutting, etc., strict and scientific management system for support demolition and real-time monitoring system are established. Engineering practice shows that the optimized construction technology ensures the safety of the support system when the support beam of deep foundation excavation is demolished, which shortens the construction period and saves cost.
Keywords: foundation excavation; supports; demolition; wire saw cutting; alternative-bay construction method; monitoring; construction;
966 0 0
文字:     A-     A+     默认 取消